导读甲基化的甲基化检测方法答DNA甲基化是最早发现的基因表观修饰方式之一,真核生物中的甲基化仅发生于胞嘧啶,即在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5’-端的胞嘧啶转变...

今天体育问答就给我们广大朋友来聊聊广西甲基化检测,以下观点希望能帮助到您找到想要的答案。

甲基化的甲基化检测方法

甲基化的甲基化检测方法

DNA甲基化是最早发现的基因表观修饰方式之一,真核生物中的甲基化仅发生于胞嘧啶,即在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5’-端的胞嘧啶转变为5’-甲基胞嘧啶。DNA甲基化通常抑制基因表达,去甲基化则诱导了基因的重新活化和表达。这种DNA修饰方式在不改变基因序列前提下实现对基因表达的调控。脊椎动物DNA的甲基化状态与生长发育调控密切相关,比如在肿瘤发生时,抑癌基因CpG岛以外的CpG序列非甲基化程度增加,CpG岛中的CpG则呈高度甲基化状态,导致抑癌基因表达的下降。

1、甲基化特异性的PCR(Methylation-specific PCR,MSP)

用亚硫酸氢盐处理基因组DNA,所有未发生甲基化的胞嘧啶被转化为尿嘧啶,而甲基化的胞嘧啶不变;随后设计针对甲基化和非甲基化序列的引物进行PCR。通过电泳检测MSP扩增产物,如果用针对处理后甲基化DNA链的引物能得到扩增片段,则说明该位点存在甲基化;反之,说明被检测的位点不存在甲基化。

2、亚硫酸氢盐测序法(Bisulfite sequencing PCR,BSP)

用亚硫酸氢盐处理基因组DNA,则未发生甲基化的胞嘧啶被转化为尿嘧啶,而甲基化的胞嘧啶不变。随后设计BSP引物进行PCR,在扩增过程中尿嘧啶全部转化为胸腺嘧啶,最后对PCR产物进行测序就可以判断CpG位点是否发生甲基化称为BSP-直接测序方法。将PCR产物克隆至载体后进行测序,可以提高测序成功率,这种方法称为BSP-克隆测序法。

3、高分辨率熔解曲线法(High Resolution Melting,HRM)

在非CpG岛位置设计一对针对亚硫酸氢盐修饰后的DNA双链的引物,这对引物中间的片段包含感兴趣的CpG岛。若这些CpG岛发生了甲基化,用亚硫酸氢盐处理后,未甲基化的胞嘧啶经PCR扩增后转变成胸腺嘧啶,而甲基化的胞嘧啶不变,样品中的GC含量发生改变,从而导致熔解温度的变化(图1)。

其中,样品要求:细胞(≥106 个)、组织(≥300mg)、血液(≥1ml)、血清(≥1.5ml)等样品材料,基因组DNA(体积≥20μl,浓度≥50 ng/μl)。

谁知道测DNA甲基化的方法?

您自己看吧!好多图片粘贴不过来,还不如你自己看。

一种全新的DNA甲基化研究方法——Pyrosequencing技术

DNA甲基化是一种表观遗传修饰,它是由DNA甲基转移酶(DNA methyl-transferase, Dnmt)催化S-腺苷甲硫氨酸作为甲基供体,将胞嘧啶转变为5-甲基胞嘧啶(mC)的一种反应,在真核生物DNA中,5-甲基胞嘧啶是唯一存在的化学性修饰碱基。CG二核苷酸是最主要的甲基化位点,它在基因组中呈不均匀分布,存在高甲基化、低甲基化和非甲基化的区域,在哺乳动物中mC约占C总量的2-7%。一般说来,DNA的甲基化会抑制基因的表达。DNA的甲基化对维持染色体的结构、X染色体的失活、基因印记和肿瘤的发生发展都起重要的作用。

CpG双核苷酸在人类基因组中的分布很不均一,而在基因组的某些区段,CpG保持或高于正常概率,这些区段被称作CpG岛。CpG岛主要位于基因的启动子和第一外显子区域,约有60%基因的启动子含有CpG岛。 CpG甲基化的研究在肿瘤的研究中有着非常主要的地位。通过基因启动子区及附近区域CpG岛胞嘧啶的甲基化可以在转录水平调节基因的表达,从而引起相应基因沉默,去甲基化又可恢复其表达。DNA甲基化在生理情况下就参与了控制基因的时空表达,在肿瘤发生时,肿瘤细胞全基因组低甲基化是一个重要特征。肿瘤细胞基因组甲基化的程度与正常细胞相比仅为20-60% , 同时伴有局部区域基因的高甲基化,包括肿瘤抑制基因、抑制肿瘤转移和浸润的基因、细胞周期调节基因、DNA修复基因、血管形成抑制基因等。但是目前研究手段的局限,限制了DNA甲基化的广泛研究。

近年来,研究者不断探索定性及定量检测单个或多个甲基化位点的方法,但由于甲基化多态性区域存在的密度很高,所以对于延伸反应其引物的位置很难设计。Pyrosequencing技术作为一种新的序列分析技术,能够快速地检测甲基化的频率,对样品中的甲基化位点进行定性及定量检测,为甲基化研究提供了新的途径。

从原理上来看,Pyrosequencing是一种通过合成方法进行序列分析的方法,它通过核苷酸和模板结合后释放的焦磷酸引发酶级联反应,促使荧光素发光并进行检测。这项技术曾经被用作单核苷酸多态性(SNP)的基因型和单倍型的检测,以及细菌和病毒的鉴定和分型研究。这项技术的一个主要特点是在Pyrogarm™软件上显示的峰值高度来自于序列分析的原始数据,通过峰值的高度可以精确的检测混合DNA模板中等位基因的频率。

目前甲基化研究方面,很多甲基化定量分析的报道采用亚硫酸氢盐处理甲基化样本,并用混合的PCR产物

作为校正。其主要原理是:亚硫酸氢盐可以将没有甲基化的胞嘧啶转化为尿嘧啶,而在适当的实验条件下甲基化的胞嘧啶保持不变。因而,用它处理样本后,再进行PCR扩增,甲基化的位点可以被当作一个C/T的SNP来处理,它的基因频率为0-100%。在此,我们给大家介绍一个研究人员使用Pyrosequencing技术分析并精确定量DNA甲基化水平的例子。

研究者在一个Pyrosequencing反应中同时检测了6个甲基化位点。这种方法同样可以用于石蜡包埋的组织,并且具有较高的重复性和精确性。实验选择谷胱甘肽-S-转移酶π(GSTP1)转录启动位点的CpG岛进行检测。这些位点在正常前列腺组织中是非甲基化的,而在肿瘤样本中高甲基化。通过PCR扩增一个包含17个甲基化多态位点140bp的片段,并用4个测序引物研究其中15个位点(Table 1)。使用在线的SNP测序引物设计软件(Pyrosequencing AB)设计测序引物,其中一些甲基化多态性位点用最可能的碱基所代替,以减少计算的数量。再通过人工检测测序引物可能存在的错配。此外,同时在PSQ 96MA DNA分析仪上运行空白对照,扣除由测序引物、生物素标记的引物或是模板引起的背景。

PCR引物设计完全与模板相匹配,不覆盖任何甲基化多态性区域。使用10ng亚硫酸氢盐转化的DNA样本或是10 fmol纯化的PCR产物,10 pmol 正向(5’-GTGATTTAGTATTGG-3’)和反向(5’-biotin-AACTCTAAACCCCATC-3’)引物扩增GSTP1转录启动位点的基因片段,扩增片段长度为144bp。反应体系为60 mM Tris-SO4, pH 8.9, 18 mM (NH4)2SO4, 1 mM MgSO4, 200 μM dNTPs,以及3 U Platinum Taq DNA高保真聚合酶,终体积为50μL。PCR循环设置:首先在95℃下变性4分钟,然后在95℃ 30S,50℃ 45S以及72℃ 20S条件下重复50个循环,最后一步延伸步骤在72℃下4分钟,中止反应。PCR反应在Eppendorf的Mastercycler 96

哺乳动物基因组中,DNA甲基化是指CpG二核苷酸中的胞嘧啶第5位碳原子被甲基化. DNA甲基化是一种基因外修饰,不改变DNA的一级结构; 他在细胞正常发育、基因表达模式以及基因组稳定性中起着至关重要的作用. 全基因组低甲基化,维持甲基化模式酶的调节失控和正常非甲基化CpG岛的高甲基化是人类肿瘤中普遍存在的现象. DNA高甲基化是导致抑癌基因失活的又一个机制.

DNA甲基化测序方法介绍

内容来自于  生信人社区  欢迎关注。

DNA 甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。

DNA 甲基化及CpG岛

DNA 甲基化是最早发现的基因表观修饰方式之一,可能存在于所有高等生物中。DNA 甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。甲基化的主要形式有5-甲基胞嘧啶,N6-甲基腺嘌呤和7-甲基鸟嘌呤。原核生物中CCA/TGG和GATC常被甲基化,而真核生物中甲基化仅发生于胞嘧啶。DNA 的甲基化是在DNA 甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5'端的胞嘧啶转变为5'甲基胞嘧啶。这种DNA 修饰方式并没有改变基因序列,但是它调控了基因的表达。脊椎动物基因的甲基化状态有三种:持续的低甲基化状态,如管家基因;去甲基化状态,如发育阶段中的一些基因;高度甲基化状态,如女性的一条失活的X染色体。

哺乳动物中,CpG序列在基因组中出现的频率仅有1%,远低于基因组中的其它双核苷酸序列。但在基因组的某些区域中,CpG序列密度很高,可以达均值的5倍,成为鸟嘌呤和胞嘧啶的富集区,形成所谓的CpG岛。通常,CpG岛大约含有500多个碱基。在哺乳动物基因组中约有4万个CpG岛,而且只有CpG岛的胞嘧啶能够被甲基化,CpG岛通常位于基因的启动子区或是第一个外显子区。健康人中,CpG岛中的CpG位点通常是处于非甲基化状态,而在CpG岛外的CpG位点则通常是甲基化的。这种甲基化的形式在细胞分裂的过程中能够稳定的保留。当肿瘤发生时,抑癌基因CpG岛以外的CpG序列非甲基化程度增加,而CpG岛中的CpG则呈高度甲基化状态,以致于染色体螺旋程度增加及抑癌基因表达的丢失。

随着高通量测序技术(NGS)技术的发展,使我们能够从全基因组水平来分析5’甲基胞嘧啶及组蛋白修饰等事件,由此能够发现很多传统的基因组学研究所不能发现的东西,这就是所谓的“DNA甲基化测序”!

DNA甲基化测序方法按原理可以分成三大类:

一、重亚硫酸盐测序;

二、基于限制性内切酶的测序;

三、靶向富集甲基化位点测序;

基于原理又有数种不同的测序方法,下面,就介绍10种DNA甲基化测序的常用方法及参考文献:

1) 重亚硫酸盐测序

该方法可以从单个碱基水平分析基因组中甲基化的胞嘧啶。首先,利用重烟硫酸盐对基因组DNA进行处理,将未发生甲基化的胞嘧啶脱氨基变成尿嘧啶。而发生了甲基化的胞嘧啶未发生脱氨基,因而,可以基于此将经重亚硫酸盐处理的和未处理的测序样本进行比较来发现甲基化的位点。

【相关文献】

Shotgun bisulphite sequencing of theArabidopsis genome reveals DNA methylation patterning

Highly integrated single-base resolutionmaps of the epigenome in Arabidopsis

2)重亚硫酸盐处理后接头标记技术(PBAT)

为了避免重亚硫酸盐处理时模板的丢失,通常会在重亚硫酸盐处理后进行接头连接和随机引物的扩增。

【相关文献】

Amplification-free whole-genome bisulfitesequencing by post-bisulfite adaptor tagging

3)限制性内切酶-重亚硫酸盐靶向测序(RRBS)

该技术是指对基因组上CpG岛或CpG甲基化较密集的区域进行靶向测序。样本首先经几种限制酶进行消化处理,然后经重亚硫酸盐处理,最后再测序。这种方法可以发现单个核苷酸水平的甲基化。

【相关文献】

Reduced representation bisulfite sequencingfor comparative high-resolution DNA methylation analysis

4)氧化-重亚硫酸盐测序(oxBS-Seq)

5’羟甲基胞嘧啶(5’hmC)是5’甲基胞嘧啶脱甲基成胞嘧啶过程的中间产物,重亚硫酸盐测序无法对二者进行区分。通过氧化-重亚硫酸盐测序,5’甲基胞嘧啶保留,而5’羟甲基胞嘧啶(5’hmC)被氧化,进而脱氨基成尿嘧啶。通过将经过氧化处理和未处理的样本进行测序比较,即可从单个碱基水平分辨5’羟甲基胞嘧啶(5’hmC)和5’甲基胞嘧啶。

【相关文献】

Quantitative sequencing of 5-formylcytosinein DNA at single-base resolution.

5)TET辅助的重亚硫酸盐测序(TAB-seq)

TAB-seq采用葡萄糖亚胺与5’羟甲基胞嘧啶(5’hmC)作用来保护免受TET蛋白的氧化。5’甲基胞嘧啶和未甲基化的胞嘧啶被脱氨基成尿嘧啶,进而可以从单个碱基水平鉴定5’羟甲基胞嘧啶(5’hmC)。

【相关文献】

Base-resolution analysis of5-hydroxymethylcytosine in the Mammalian genome

6)甲基化敏感性的限制酶测序(MRE-Seq)

MRE-Seq将甲基化作用的敏感性和限制酶的特异性结合起来进而鉴定CpG岛的甲基化状态。

【相关文献】

Genome-scale DNA methylation analysis

7)HELP-Seq

HELP-Seq采用HpaII及其甲基化不敏感的限制性内切酶MSPI处理,来对基因组内及基因组间的甲基化位点进行比较,进而实现甲基化测序。

【相关文献】

Comparative isoschizomer profiling ofcytosine methylation: the HELP assay

8)甲基化DNA免疫共沉淀测序(MeDIP)

MeDIP是一种采用抗体或甲基化DNA结合蛋白来捕获富集甲基化DNA的技术,这种技术可以发现基因组中高度甲基化的区域,如CpG岛,但不能进行单个碱基水平的分析。

【相关文献】

Chromosome-wide and promoter-specificanalyses identify sites of differential DNA methylation in normal andtransformed human cells

9)甲基化结合域捕获技术(MBD-CAP)

MBD-CAP技术利用甲基化DNA能够结合蛋白MeCP2,MBD1-2 和 MBD3LI来对甲基化的DNA进行免疫沉淀。与MeDIP技术相似,该技术也是可以发现基因组中高度甲基化的区域,不能从单个碱基水平分析甲基化。

【相关文献】

High-resolution mapping of DNAhypermethylation and hypomethylation in lung cancer

10)基于探针的靶向富集技术

甲基化测序靶向富集技术采用合成寡核苷酸探针来捕获CpG岛、基因启动子区域以及其他一些显著性甲基化的区域。目前,Agilent 和 Roche Nimblegen公司已有这种商品化的试剂盒。

最后,Pacific Biosciences(Pacbio)公司的这项SMRT DNA测序技术采用动力学原理来直接检测甲基化的胞嘧啶。

其中三代测序技术针对真核中的5mc检测需要的深度较深,大概要250x,但是利用特殊的试剂会降低其深度。

甲基化检测的检测程序

1.甲基化特异性的PCR(Methylation-specific PCR,MSP)

用亚硫酸氢盐处理基因组DNA,所有未发生甲基化的胞嘧啶被转化为尿嘧啶,而甲基化的胞嘧啶不变;随后设计针对甲基化和非甲基化序列的引物进行PCR。通过电泳检测MSP扩增产物,如果用针对处理后甲基化DNA链的引物能得到扩增片段,则说明该位点存在甲基化;反之,说明被检测的位点不存在甲基化。

2.亚硫酸氢盐测序法(Bisulfite sequencing PCR,BSP)

用亚硫酸氢盐处理基因组DNA,则未发生甲基化的胞嘧啶被转化为尿嘧啶,而甲基化的胞嘧啶不变。随后设计BSP引物进行PCR,在扩增过程中尿嘧啶全部转化为胸腺嘧啶,最后对PCR产物进行测序就可以判断CpG位点是否发生甲基化称为BSP-直接测序方法。将PCR产物克隆至载体后进行测序,可以提高测序成功率,这种方法称为BSP-克隆测序法。

3.高分辨率熔解曲线法(High Resolution Melting,HRM)

在非CpG岛位置设计一对针对亚硫酸氢盐修饰后的DNA双链的引物,这对引物中间的片段包含感兴趣的CpG岛。若这些CpG岛发生了甲基化,用亚硫酸氢盐处理后,未甲基化的胞嘧啶经PCR扩增后转变成胸腺嘧啶,而甲基化的胞嘧啶不变,样品中的GC含量发生改变,从而导致熔解温度的变化(图1)。

今天的内容先分享到这里了,读完本文《┏ 广西甲基化检测 ┛甲基化检测法》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuiqiubifen.com,您的关注是给小编最大的鼓励。